The Impact of Feature Reduction Techniques on Arabic Document Classification
نویسندگان
چکیده
Feature reduction are common techniques that used to improve the efficiency and accuracy of the document classification systems. The problems associated with these techniques are the highly dimensionality of the feature space and The difficulty of selecting the important features for understanding the document in question. The document usually consists of several parts and the important features that more closely associated with the topic of the document are appearing in the first parts or repeated in several parts of the document. Therefore, the position of the first appearance of a word and the compactness of the word considered as factors that determine the important features using the information within a document. This study, explored the impact of combining three feature weighting methods that depend on inverse document frequency (IDF), namely, Term frequency (TFiDF), the position of the first appearance of a word (FAiDF), and the compactness of the word (CPiDF) on the classification accuracy. In addition, we have investigated different feature selection techniques, namely, Information gain (IG), Goh and Low (NGL) coefficients, Chi-square Testing (CHI), and GalavottiSebastiani-Simi Coefficient (GSS) in order to improve the performance for Arabic document classification system. Experimental analysis on Arabic datasets reveals that the proposed methods have a significant impact on the classification accuracy, and in most cases the FAiDF feature weighting performed better than CPiDF and TFiDF. The results also clearly showed the superiority of the GSS over the other feature selection techniques and achieved 98.39% micro-F1 value when using a combination of TFiDF, FAiDF, and CPiDF as feature weighting method.
منابع مشابه
Document Analysis And Classification Based On Passing Window
In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...
متن کاملArabic News Articles Classification Using Vectorized-Cosine Based on Seed Documents
Besides for its own merits, text classification (TC) has become a cornerstone in many applications. Work presented here is part of and a pre-requisite for a project we have overtaken to create a corpus for the Arabic text process. It is an attempt to create modules automatically that would help speed up the process of classification for any text categorization task. It also serves as a tool for...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملDewy index based Arabic Document classification with Synonyms Merge Feature Reduction
Feature reduction is an important process before documents classification. The classification performance is impact by the quality of the selected. A new semantic approach is presented using synonym merge to preserve features semantic and prevent important terms from being excluded. The resulting feature space were then processed with five feature selection methods, ID, TFIDF, CHI, IG and MI. e...
متن کاملA New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016